Study on fatigue and breakdown properties of Pt/(Pb,Sr)TiO(3)/Pt capacitors.

نویسندگان

  • Jyh-Liang Wang
  • Yi-Sheng Lai
  • Bi-Shiou Chiou
  • Huai-Yuan Tseng
  • Chun-Chien Tsai
  • Chuan-Ping Juan
  • Chueh-Kuei Jan
  • Huang-Chung Cheng
چکیده

Pulsed-laser deposited (Pb,Sr)TiO(3) (PSrT) films on Pt/SiO(2)/Si substrate at various ambient oxygen pressures (P(O(2))) are investigated in this work. Films deposited at P(O(2)) below 100 mTorr exhibit the (100) preferred orientation and a tetragonal structure with larger tetragonality. In addition, films deposited at 80 mTorr exhibit the most apparent ferroelectric properties in contrast to those deposited at 200 mTorr. Moreover, films deposited at higher P(O(2)) also exhibit longer lifetimes and higher breakdown fields due to their smaller leakage current density, in terms of the reduction of defects, compensation of oxygen vacancies (OVs), an improved interface and small cluster sizes. An energy band model reveals that fatigue properties of PSrT films are dominated by interfacial states at low P(O(2)) and by deep trapping states at high P(O(2)), which could be ascribed to OVs located at the interfaces and inside films, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1-x)PbMg1/3Nb2/3O₃-xPbT...

متن کامل

Stability and chemisorption properties of ultrathin TiO(x)/Pt(111) films and Au/TiO(x)/Pt(111) model catalysts in reactive atmospheres.

The stability of three ultrathin TiO(x)/Pt(111) films with different stoichiometry and defectivity and the corresponding Au/TiO(x)/Pt(111) model catalysts in CO or a CO-O(2) (1 : 1) gas mixture up to a pressure of 100 mbar has been investigated. According to previous studies, the ultrathin films proved to be effective substrates to deposit in UHV Au nanoparticles with specific morphologies and ...

متن کامل

Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prep...

متن کامل

X-ray spectroscopy studies on the surface structural characteristics and electronic properties of platinum nanoparticles.

The surface structural characteristics and electronic behavior of three platinum nanoparticle (NP) samples prepared with tertiary amine (Pt-TA), primary amine (Pt-PA), and thiol (Pt-SR) molecules were studied using Pt 4f, 5d, and S 2p x-ray photoelectron spectroscopy (XPS), Pt L(3)-edge x-ray absorption spectroscopy (XAS), and theoretical projected local density of states (l-DOS) calculations. ...

متن کامل

Electrocatalytic properties of platinum and it's binary alloy with vanadium in oxygen reduction reaction(ORR)

The electrocatalysis of the oxygen reduction reaction (ORR) on carbon supportedPt-V (1:1) catalyst in polymer electrolyte fuel cells (PEFC) was investigated. Atan oxygen pressure of one atm an enhanced electrocatalytic property of Pt-V/Ccompared with Pt/C is revealed. These results indicate the occurrence of adifferent electrocatalytic mechanism for the ORR on Pt/C and Pt-V/C. Anincrease of mas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 18 46  شماره 

صفحات  -

تاریخ انتشار 2006